There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(sqrt(4) + {x}^{2} + x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(sqrt(4) + x^{2} + x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(sqrt(4) + x^{2} + x)\right)}{dx}\\=&\frac{(0*\frac{1}{2}*4^{\frac{1}{2}} + 2x + 1)}{(sqrt(4) + x^{2} + x)}\\=&\frac{2x}{(sqrt(4) + x^{2} + x)} + \frac{1}{(sqrt(4) + x^{2} + x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x}{(sqrt(4) + x^{2} + x)} + \frac{1}{(sqrt(4) + x^{2} + x)}\right)}{dx}\\=&2(\frac{-(0*\frac{1}{2}*4^{\frac{1}{2}} + 2x + 1)}{(sqrt(4) + x^{2} + x)^{2}})x + \frac{2}{(sqrt(4) + x^{2} + x)} + (\frac{-(0*\frac{1}{2}*4^{\frac{1}{2}} + 2x + 1)}{(sqrt(4) + x^{2} + x)^{2}})\\=&\frac{-4x^{2}}{(sqrt(4) + x^{2} + x)^{2}} - \frac{4x}{(sqrt(4) + x^{2} + x)^{2}} + \frac{2}{(sqrt(4) + x^{2} + x)} - \frac{1}{(sqrt(4) + x^{2} + x)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !