There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({3}^{cos(x)}){sin(3)}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {3}^{cos(x)}{sin(3)}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {3}^{cos(x)}{sin(3)}^{x}\right)}{dx}\\=&({3}^{cos(x)}((-sin(x))ln(3) + \frac{(cos(x))(0)}{(3)})){sin(3)}^{x} + {3}^{cos(x)}({sin(3)}^{x}((1)ln(sin(3)) + \frac{(x)(cos(3)*0)}{(sin(3))}))\\=&-{3}^{cos(x)}{sin(3)}^{x}ln(3)sin(x) + {sin(3)}^{x}{3}^{cos(x)}ln(sin(3))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !