Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ x - \frac{1}{x} - 2xln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 2xln(x) - \frac{1}{x} + x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 2xln(x) - \frac{1}{x} + x\right)}{dx}\\=& - 2ln(x) - \frac{2x}{(x)} - \frac{-1}{x^{2}} + 1\\=& - 2ln(x) + \frac{1}{x^{2}} - 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - 2ln(x) + \frac{1}{x^{2}} - 1\right)}{dx}\\=& - \frac{2}{(x)} + \frac{-2}{x^{3}} + 0\\=& - \frac{2}{x} - \frac{2}{x^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return