Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 + 17x){\frac{1}{(a - 33x)}}^{2} + 12K{x}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{17x}{(a - 33x)^{2}} + \frac{1}{(a - 33x)^{2}} + 12Kx^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{17x}{(a - 33x)^{2}} + \frac{1}{(a - 33x)^{2}} + 12Kx^{2}\right)}{dx}\\=&17(\frac{-2(0 - 33)}{(a - 33x)^{3}})x + \frac{17}{(a - 33x)^{2}} + (\frac{-2(0 - 33)}{(a - 33x)^{3}}) + 12K*2x\\=&\frac{1122x}{(a - 33x)^{3}} + \frac{66}{(a - 33x)^{3}} + \frac{17}{(a - 33x)^{2}} + 24Kx\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return