Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{ln(3x)}{({x}^{5})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(3x)}{x^{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(3x)}{x^{5}}\right)}{dx}\\=&\frac{-5ln(3x)}{x^{6}} + \frac{3}{x^{5}(3x)}\\=&\frac{-5ln(3x)}{x^{6}} + \frac{1}{x^{6}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-5ln(3x)}{x^{6}} + \frac{1}{x^{6}}\right)}{dx}\\=&\frac{-5*-6ln(3x)}{x^{7}} - \frac{5*3}{x^{6}(3x)} + \frac{-6}{x^{7}}\\=&\frac{30ln(3x)}{x^{7}} - \frac{11}{x^{7}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return