Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2012} + {2019}^{x} - {2020}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2012} + {2019}^{x} - {2020}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2012} + {2019}^{x} - {2020}^{x}\right)}{dx}\\=&2012x^{2011} + ({2019}^{x}((1)ln(2019) + \frac{(x)(0)}{(2019)})) - ({2020}^{x}((1)ln(2020) + \frac{(x)(0)}{(2020)}))\\=&2012x^{2011} + {2019}^{x}ln(2019) - {2020}^{x}ln(2020)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return