There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a({e}^{x} - 1 + {e}^{1} - x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a{e}^{x} + ae - ax - a\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a{e}^{x} + ae - ax - a\right)}{dx}\\=&a({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + a*0 - a + 0\\=&a{e}^{x} - a\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !