There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 40sin(ln(x)){\frac{1}{x}}^{5} - 10cos(ln(x)){\frac{1}{x}}^{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{40sin(ln(x))}{x^{5}} - \frac{10cos(ln(x))}{x^{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{40sin(ln(x))}{x^{5}} - \frac{10cos(ln(x))}{x^{5}}\right)}{dx}\\=&\frac{40*-5sin(ln(x))}{x^{6}} + \frac{40cos(ln(x))}{x^{5}(x)} - \frac{10*-5cos(ln(x))}{x^{6}} - \frac{10*-sin(ln(x))}{x^{5}(x)}\\=&\frac{-190sin(ln(x))}{x^{6}} + \frac{90cos(ln(x))}{x^{6}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !