There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ cos(ln(x)){\frac{1}{x}}^{3} + 3sin(ln(x)){\frac{1}{x}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{cos(ln(x))}{x^{3}} + \frac{3sin(ln(x))}{x^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{cos(ln(x))}{x^{3}} + \frac{3sin(ln(x))}{x^{3}}\right)}{dx}\\=&\frac{-3cos(ln(x))}{x^{4}} + \frac{-sin(ln(x))}{x^{3}(x)} + \frac{3*-3sin(ln(x))}{x^{4}} + \frac{3cos(ln(x))}{x^{3}(x)}\\=&\frac{-10sin(ln(x))}{x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !