Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (-({t}^{2})ln(t) - (\frac{({t}^{2})}{3})){\frac{1}{ln(t)}}^{2}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-t^{2}}{ln(t)} - \frac{\frac{1}{3}t^{2}}{ln^{2}(t)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-t^{2}}{ln(t)} - \frac{\frac{1}{3}t^{2}}{ln^{2}(t)}\right)}{dt}\\=&\frac{-2t}{ln(t)} - \frac{t^{2}*-1}{ln^{2}(t)(t)} - \frac{\frac{1}{3}*2t}{ln^{2}(t)} - \frac{\frac{1}{3}t^{2}*-2}{ln^{3}(t)(t)}\\=&\frac{-2t}{ln(t)} + \frac{t}{3ln^{2}(t)} + \frac{2t}{3ln^{3}(t)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return