Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{3}^{{\frac{1}{(1 - 2x)}}^{\frac{1}{2}}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{3}^{\frac{1}{(-2x + 1)^{\frac{1}{2}}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{3}^{\frac{1}{(-2x + 1)^{\frac{1}{2}}}}\right)}{dx}\\=&(\frac{(\frac{((\frac{\frac{-1}{2}(-2 + 0)}{(-2x + 1)^{\frac{3}{2}}}))}{(\frac{1}{(-2x + 1)^{\frac{1}{2}}})} - \frac{(0)log_{3}^{\frac{1}{(-2x + 1)^{\frac{1}{2}}}}}{(3)})}{(ln(3))})\\=&\frac{1}{(-2x + 1)ln(3)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return