Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{sin(x)}{(x - cos(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sin(x)}{(x - cos(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sin(x)}{(x - cos(x))}\right)}{dx}\\=&(\frac{-(1 - -sin(x))}{(x - cos(x))^{2}})sin(x) + \frac{cos(x)}{(x - cos(x))}\\=&\frac{-sin^{2}(x)}{(x - cos(x))^{2}} - \frac{sin(x)}{(x - cos(x))^{2}} + \frac{cos(x)}{(x - cos(x))}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sin^{2}(x)}{(x - cos(x))^{2}} - \frac{sin(x)}{(x - cos(x))^{2}} + \frac{cos(x)}{(x - cos(x))}\right)}{dx}\\=&-(\frac{-2(1 - -sin(x))}{(x - cos(x))^{3}})sin^{2}(x) - \frac{2sin(x)cos(x)}{(x - cos(x))^{2}} - (\frac{-2(1 - -sin(x))}{(x - cos(x))^{3}})sin(x) - \frac{cos(x)}{(x - cos(x))^{2}} + (\frac{-(1 - -sin(x))}{(x - cos(x))^{2}})cos(x) + \frac{-sin(x)}{(x - cos(x))}\\=& - \frac{3sin(x)cos(x)}{(x - cos(x))^{2}} + \frac{4sin^{2}(x)}{(x - cos(x))^{3}} + \frac{2sin^{3}(x)}{(x - cos(x))^{3}} + \frac{2sin(x)}{(x - cos(x))^{3}} - \frac{2cos(x)}{(x - cos(x))^{2}} - \frac{sin(x)}{(x - cos(x))}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return