There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{-k{h}^{3}}{3} + (71k - b)x + 142b)x}{k} + b\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-1}{3}h^{3}x + 71x^{2} - \frac{bx^{2}}{k} + \frac{142bx}{k} + b\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-1}{3}h^{3}x + 71x^{2} - \frac{bx^{2}}{k} + \frac{142bx}{k} + b\right)}{dx}\\=&\frac{-1}{3}h^{3} + 71*2x - \frac{b*2x}{k} + \frac{142b}{k} + 0\\=&\frac{-h^{3}}{3} + 142x - \frac{2bx}{k} + \frac{142b}{k}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !