There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2{x}^{3} + x + sqrt(\frac{1}{2} - {x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{3} + x + sqrt(-x^{2} + \frac{1}{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{3} + x + sqrt(-x^{2} + \frac{1}{2})\right)}{dx}\\=&2*3x^{2} + 1 + \frac{(-2x + 0)*\frac{1}{2}}{(-x^{2} + \frac{1}{2})^{\frac{1}{2}}}\\=&6x^{2} - \frac{x}{(-x^{2} + \frac{1}{2})^{\frac{1}{2}}} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !