Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{(4 - x)}{(4 + x)}) + ({x}^{2} + 2)sin(x) + 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)}) + x^{2}sin(x) + 2sin(x) + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)}) + x^{2}sin(x) + 2sin(x) + 2\right)}{dx}\\=&\frac{(-(\frac{-(1 + 0)}{(x + 4)^{2}})x - \frac{1}{(x + 4)} + 4(\frac{-(1 + 0)}{(x + 4)^{2}}))}{(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)})} + 2xsin(x) + x^{2}cos(x) + 2cos(x) + 0\\=&\frac{x}{(x + 4)^{2}(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)})} - \frac{4}{(x + 4)^{2}(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)})} - \frac{1}{(\frac{-x}{(x + 4)} + \frac{4}{(x + 4)})(x + 4)} + 2xsin(x) + x^{2}cos(x) + 2cos(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return