Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({e}^{{x}^{2}} - 1)}{(xln(1 - 6x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{x^{2}}}{xln(-6x + 1)} - \frac{1}{xln(-6x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{x^{2}}}{xln(-6x + 1)} - \frac{1}{xln(-6x + 1)}\right)}{dx}\\=&\frac{-{e}^{x^{2}}}{x^{2}ln(-6x + 1)} + \frac{({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))}{xln(-6x + 1)} + \frac{{e}^{x^{2}}*-(-6 + 0)}{xln^{2}(-6x + 1)(-6x + 1)} - \frac{-1}{x^{2}ln(-6x + 1)} - \frac{-(-6 + 0)}{xln^{2}(-6x + 1)(-6x + 1)}\\=&\frac{-{e}^{x^{2}}}{x^{2}ln(-6x + 1)} + \frac{2{e}^{x^{2}}}{ln(-6x + 1)} + \frac{6{e}^{x^{2}}}{(-6x + 1)xln^{2}(-6x + 1)} + \frac{1}{x^{2}ln(-6x + 1)} - \frac{6}{(-6x + 1)xln^{2}(-6x + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return