There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{xy} + y(1 + ln(x + 1)) - cos(2)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{yx} + yln(x + 1) + y - xcos(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{yx} + yln(x + 1) + y - xcos(2)\right)}{dx}\\=&e^{yx}y + \frac{y(1 + 0)}{(x + 1)} + 0 - cos(2) - x*-sin(2)*0\\=&ye^{yx} + \frac{y}{(x + 1)} - cos(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !