Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ abs + (\frac{-1}{({(x - 0.3)}^{2} + 0.01)} + \frac{1}{({(x - 0.9)}^{2} + 0.04)} - 6)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = abs - \frac{1}{(x^{2} - 0.3x - 0.3x + 0.1)} + \frac{1}{(x - 0.86)} - 6\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( abs - \frac{1}{(x^{2} - 0.3x - 0.3x + 0.1)} + \frac{1}{(x - 0.86)} - 6\right)}{dx}\\=&0 - (\frac{-(2x - 0.3 - 0.3 + 0)}{(x^{2} - 0.3x - 0.3x + 0.1)^{2}}) + (\frac{-(1 + 0)}{(x - 0.86)^{2}}) + 0\\=& - \frac{-2x}{(x^{2} - 0.3x - 0.3x + 0.1)(x^{2} - 0.3x - 0.3x + 0.1)} - \frac{0.6}{(x^{2} - 0.3x - 0.3x + 0.1)(x^{2} - 0.3x - 0.3x + 0.1)} - \frac{1}{(x - 0.86)(x - 0.86)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return