Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ csc(xx + 5x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = csc(x^{2} + 5x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( csc(x^{2} + 5x)\right)}{dx}\\=&-csc(x^{2} + 5x)cot(x^{2} + 5x)(2x + 5)\\=&-2xcot(x^{2} + 5x)csc(x^{2} + 5x) - 5cot(x^{2} + 5x)csc(x^{2} + 5x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -2xcot(x^{2} + 5x)csc(x^{2} + 5x) - 5cot(x^{2} + 5x)csc(x^{2} + 5x)\right)}{dx}\\=&-2cot(x^{2} + 5x)csc(x^{2} + 5x) - 2x*-csc^{2}(x^{2} + 5x)(2x + 5)csc(x^{2} + 5x) - 2xcot(x^{2} + 5x)*-csc(x^{2} + 5x)cot(x^{2} + 5x)(2x + 5) - 5*-csc^{2}(x^{2} + 5x)(2x + 5)csc(x^{2} + 5x) - 5cot(x^{2} + 5x)*-csc(x^{2} + 5x)cot(x^{2} + 5x)(2x + 5)\\=&-2cot(x^{2} + 5x)csc(x^{2} + 5x) + 4x^{2}csc^{3}(x^{2} + 5x) + 20xcsc^{3}(x^{2} + 5x) + 4x^{2}cot^{2}(x^{2} + 5x)csc(x^{2} + 5x) + 20xcot^{2}(x^{2} + 5x)csc(x^{2} + 5x) + 25csc^{3}(x^{2} + 5x) + 25cot^{2}(x^{2} + 5x)csc(x^{2} + 5x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return