There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sin(xx + 5x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x^{2} + 5x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x^{2} + 5x)\right)}{dx}\\=&cos(x^{2} + 5x)(2x + 5)\\=&2xcos(x^{2} + 5x) + 5cos(x^{2} + 5x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2xcos(x^{2} + 5x) + 5cos(x^{2} + 5x)\right)}{dx}\\=&2cos(x^{2} + 5x) + 2x*-sin(x^{2} + 5x)(2x + 5) + 5*-sin(x^{2} + 5x)(2x + 5)\\=&2cos(x^{2} + 5x) - 4x^{2}sin(x^{2} + 5x) - 20xsin(x^{2} + 5x) - 25sin(x^{2} + 5x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !