There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(2 - x) - ln(x) + \frac{1}{(2 - x)} - \frac{1}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(-x + 2) - ln(x) + \frac{1}{(-x + 2)} - \frac{1}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(-x + 2) - ln(x) + \frac{1}{(-x + 2)} - \frac{1}{x}\right)}{dx}\\=&\frac{(-1 + 0)}{(-x + 2)} - \frac{1}{(x)} + (\frac{-(-1 + 0)}{(-x + 2)^{2}}) - \frac{-1}{x^{2}}\\=&\frac{1}{(-x + 2)^{2}} - \frac{1}{x} - \frac{1}{(-x + 2)} + \frac{1}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !