Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (x - 1)(x - 2)(x - 2)(x - 3)(x - 3)(x - 3)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{6} - 14x^{5} + 80x^{4} - 238x^{3} + 387x^{2} - 324x + 108\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{6} - 14x^{5} + 80x^{4} - 238x^{3} + 387x^{2} - 324x + 108\right)}{dx}\\=&6x^{5} - 14*5x^{4} + 80*4x^{3} - 238*3x^{2} + 387*2x - 324 + 0\\=&6x^{5} - 70x^{4} + 320x^{3} - 714x^{2} + 774x - 324\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 6x^{5} - 70x^{4} + 320x^{3} - 714x^{2} + 774x - 324\right)}{dx}\\=&6*5x^{4} - 70*4x^{3} + 320*3x^{2} - 714*2x + 774 + 0\\=&30x^{4} - 280x^{3} + 960x^{2} - 1428x + 774\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return