There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(\frac{-2}{x})}{\frac{1}{x}}^{(\frac{3}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(\frac{-2}{x})}{\frac{1}{x}}^{\frac{3}{2}}\right)}{dx}\\=&({e}^{(\frac{-2}{x})}((\frac{-2*-1}{x^{2}})ln(e) + \frac{(\frac{-2}{x})(0)}{(e)})){\frac{1}{x}}^{\frac{3}{2}} + {e}^{(\frac{-2}{x})}({\frac{1}{x}}^{\frac{3}{2}}((0)ln(\frac{1}{x}) + \frac{(\frac{3}{2})(\frac{-1}{x^{2}})}{(\frac{1}{x})}))\\=&\frac{2{e}^{(\frac{-2}{x})}}{x^{\frac{7}{2}}} - \frac{3{e}^{(\frac{-2}{x})}}{2x^{\frac{5}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !