There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {n}^{\frac{1}{n}} - \frac{{(-1)}^{n}}{n}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {n}^{\frac{1}{n}} - \frac{{-1}^{n}}{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {n}^{\frac{1}{n}} - \frac{{-1}^{n}}{n}\right)}{dx}\\=&({n}^{\frac{1}{n}}((0)ln(n) + \frac{(\frac{1}{n})(0)}{(n)})) - \frac{({-1}^{n}((0)ln(-1) + \frac{(n)(0)}{(-1)}))}{n}\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !