Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(x - 500)}{(\frac{x}{2} - 500)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(\frac{1}{2}x - 500)} - \frac{500}{(\frac{1}{2}x - 500)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(\frac{1}{2}x - 500)} - \frac{500}{(\frac{1}{2}x - 500)}\right)}{dx}\\=&(\frac{-(\frac{1}{2} + 0)}{(\frac{1}{2}x - 500)^{2}})x + \frac{1}{(\frac{1}{2}x - 500)} - 500(\frac{-(\frac{1}{2} + 0)}{(\frac{1}{2}x - 500)^{2}})\\=&\frac{-x}{2(\frac{1}{2}x - 500)^{2}} + \frac{250}{(\frac{1}{2}x - 500)^{2}} + \frac{1}{(\frac{1}{2}x - 500)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-x}{2(\frac{1}{2}x - 500)^{2}} + \frac{250}{(\frac{1}{2}x - 500)^{2}} + \frac{1}{(\frac{1}{2}x - 500)}\right)}{dx}\\=&\frac{-(\frac{-2(\frac{1}{2} + 0)}{(\frac{1}{2}x - 500)^{3}})x}{2} - \frac{1}{2(\frac{1}{2}x - 500)^{2}} + 250(\frac{-2(\frac{1}{2} + 0)}{(\frac{1}{2}x - 500)^{3}}) + (\frac{-(\frac{1}{2} + 0)}{(\frac{1}{2}x - 500)^{2}})\\=&\frac{x}{2(\frac{1}{2}x - 500)^{3}} - \frac{250}{(\frac{1}{2}x - 500)^{3}} - \frac{1}{(\frac{1}{2}x - 500)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return