Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ h - lcos(d + arccos(\frac{({a}^{2} + {n}^{2} - {x}^{2})}{(2an)}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = h - lcos(d + arccos(\frac{\frac{-1}{2}x^{2}}{an} + \frac{\frac{1}{2}n}{a} + \frac{\frac{1}{2}a}{n}))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( h - lcos(d + arccos(\frac{\frac{-1}{2}x^{2}}{an} + \frac{\frac{1}{2}n}{a} + \frac{\frac{1}{2}a}{n}))\right)}{dx}\\=&0 - l*-sin(d + arccos(\frac{\frac{-1}{2}x^{2}}{an} + \frac{\frac{1}{2}n}{a} + \frac{\frac{1}{2}a}{n}))(0 + (\frac{-(\frac{\frac{-1}{2}*2x}{an} + 0 + 0)}{((1 - (\frac{\frac{-1}{2}x^{2}}{an} + \frac{\frac{1}{2}n}{a} + \frac{\frac{1}{2}a}{n})^{2})^{\frac{1}{2}})}))\\=&\frac{lxsin(d + arccos(\frac{\frac{-1}{2}x^{2}}{an} + \frac{\frac{1}{2}n}{a} + \frac{\frac{1}{2}a}{n}))}{(\frac{\frac{-1}{4}x^{4}}{a^{2}n^{2}} + \frac{\frac{1}{2}x^{2}}{a^{2}} + \frac{\frac{1}{2}x^{2}}{n^{2}} - \frac{\frac{1}{4}n^{2}}{a^{2}} - \frac{\frac{1}{4}a^{2}}{n^{2}} + \frac{1}{2})^{\frac{1}{2}}an}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return