There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 - \frac{1}{2}x) - {(1 - \frac{1}{2})}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{1}{2}x - {\frac{1}{2}}^{x} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{1}{2}x - {\frac{1}{2}}^{x} + 1\right)}{dx}\\=& - \frac{1}{2} - ({\frac{1}{2}}^{x}((1)ln(\frac{1}{2}) + \frac{(x)(0)}{(\frac{1}{2})})) + 0\\=& - {\frac{1}{2}}^{x}ln(\frac{1}{2}) - \frac{1}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !