There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (933(1.496 + 0.466 + 0.2) + 311 + 933*1.5(0.936 - 0.01x))(1 + 0.8(0.02x + 0.884))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 22.332288x + 6.956448x + 2.9856x + 4.976x + 20.958912x - 13.995x - 0.22392x^{2} - 9.897264x + 6210.9267616\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 22.332288x + 6.956448x + 2.9856x + 4.976x + 20.958912x - 13.995x - 0.22392x^{2} - 9.897264x + 6210.9267616\right)}{dx}\\=&22.332288 + 6.956448 + 2.9856 + 4.976 + 20.958912 - 13.995 - 0.22392*2x - 9.897264 + 0\\=& - 0.44784x + 34.316984\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !