There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 2x + \frac{3}{x} + ln(x) - 3 + \frac{a}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x + \frac{3}{x} + ln(x) + \frac{a}{x} - 3\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x + \frac{3}{x} + ln(x) + \frac{a}{x} - 3\right)}{dx}\\=&2 + \frac{3*-1}{x^{2}} + \frac{1}{(x)} + \frac{a*-1}{x^{2}} + 0\\=& - \frac{3}{x^{2}} + \frac{1}{x} - \frac{a}{x^{2}} + 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{3}{x^{2}} + \frac{1}{x} - \frac{a}{x^{2}} + 2\right)}{dx}\\=& - \frac{3*-2}{x^{3}} + \frac{-1}{x^{2}} - \frac{a*-2}{x^{3}} + 0\\=&\frac{6}{x^{3}} - \frac{1}{x^{2}} + \frac{2a}{x^{3}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{6}{x^{3}} - \frac{1}{x^{2}} + \frac{2a}{x^{3}}\right)}{dx}\\=&\frac{6*-3}{x^{4}} - \frac{-2}{x^{3}} + \frac{2a*-3}{x^{4}}\\=& - \frac{18}{x^{4}} + \frac{2}{x^{3}} - \frac{6a}{x^{4}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - \frac{18}{x^{4}} + \frac{2}{x^{3}} - \frac{6a}{x^{4}}\right)}{dx}\\=& - \frac{18*-4}{x^{5}} + \frac{2*-3}{x^{4}} - \frac{6a*-4}{x^{5}}\\=&\frac{72}{x^{5}} - \frac{6}{x^{4}} + \frac{24a}{x^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !