Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of z is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{(2z)}}{z}\ with\ respect\ to\ z:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{(2z)}}{z}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{(2z)}}{z}\right)}{dz}\\=&\frac{-{e}^{(2z)}}{z^{2}} + \frac{({e}^{(2z)}((2)ln(e) + \frac{(2z)(0)}{(e)}))}{z}\\=&\frac{-{e}^{(2z)}}{z^{2}} + \frac{2{e}^{(2z)}}{z}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return