There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 173 + 152x - \frac{48}{5}{x}^{2} + \frac{1}{5}{x}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 152x - \frac{48}{5}x^{2} + \frac{1}{5}x^{3} + 173\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 152x - \frac{48}{5}x^{2} + \frac{1}{5}x^{3} + 173\right)}{dx}\\=&152 - \frac{48}{5}*2x + \frac{1}{5}*3x^{2} + 0\\=& - \frac{96x}{5} + \frac{3x^{2}}{5} + 152\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !