There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} + 2x)}{(x + ln(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(x + ln(x))} + \frac{2x}{(x + ln(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(x + ln(x))} + \frac{2x}{(x + ln(x))}\right)}{dx}\\=&(\frac{-(1 + \frac{1}{(x)})}{(x + ln(x))^{2}})x^{2} + \frac{2x}{(x + ln(x))} + 2(\frac{-(1 + \frac{1}{(x)})}{(x + ln(x))^{2}})x + \frac{2}{(x + ln(x))}\\=& - \frac{3x}{(x + ln(x))^{2}} + \frac{2x}{(x + ln(x))} - \frac{x^{2}}{(x + ln(x))^{2}} - \frac{2}{(x + ln(x))^{2}} + \frac{2}{(x + ln(x))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !