There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{x}}{(2sqrt(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}{e}^{x}}{sqrt(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}{e}^{x}}{sqrt(x)}\right)}{dx}\\=&\frac{\frac{1}{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{sqrt(x)} + \frac{\frac{1}{2}{e}^{x}*-\frac{1}{2}}{(x)(x)^{\frac{1}{2}}}\\=&\frac{{e}^{x}}{2sqrt(x)} - \frac{{e}^{x}}{4x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !