Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{(sqrt({x}^{2} + {a}^{2}) + a)}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})\right)}{dx}\\=&\frac{(\frac{-sqrt(x^{2} + a^{2})}{x^{2}} + \frac{(2x + 0)*\frac{1}{2}}{x(x^{2} + a^{2})^{\frac{1}{2}}} + \frac{a*-1}{x^{2}})}{(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})}\\=&\frac{-sqrt(x^{2} + a^{2})}{(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})x^{2}} + \frac{1}{(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})(x^{2} + a^{2})^{\frac{1}{2}}} - \frac{a}{(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return