There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (930(1.55 + 0.466) + 311)(1 + (0.01x + 0.05)(0.02(147.8 - x) + 0.5))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 42.61074x - 0.2883x^{2} + 7.2075x - 1.4415x + 12.8107128x - 0.086676x^{2} + 2.1669x - 0.43338x + 9.19316x - 0.0622x^{2} + 1.555x - 0.311x + 2563.600064\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 42.61074x - 0.2883x^{2} + 7.2075x - 1.4415x + 12.8107128x - 0.086676x^{2} + 2.1669x - 0.43338x + 9.19316x - 0.0622x^{2} + 1.555x - 0.311x + 2563.600064\right)}{dx}\\=&42.61074 - 0.2883*2x + 7.2075 - 1.4415 + 12.8107128 - 0.086676*2x + 2.1669 - 0.43338 + 9.19316 - 0.0622*2x + 1.555 - 0.311 + 0\\=& - 0.5766x - 0.173352x - 0.1244x + 73.3581328\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !