There are 1 questions in this calculation: for each question, the 5 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 5th\ derivative\ of\ function\ {{x}^{y}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ \\ &\color{blue}{The\ 5th\ derivative\ of\ function:} \\=&{{x}^{y}}^{x}ln^{5}({x}^{y}) - \frac{10y{{x}^{y}}^{x}ln^{2}({x}^{y})}{x^{2}} + \frac{10y{{x}^{y}}^{x}ln^{3}({x}^{y})}{x} + \frac{30y^{2}{{x}^{y}}^{x}ln^{2}({x}^{y})}{x} - \frac{5y^{2}{{x}^{y}}^{x}ln({x}^{y})}{x^{2}} + 5y{{x}^{y}}^{x}ln^{4}({x}^{y}) + 10y^{2}{{x}^{y}}^{x}ln^{3}({x}^{y}) + 10y^{3}{{x}^{y}}^{x}ln^{2}({x}^{y}) + \frac{30y^{3}{{x}^{y}}^{x}ln({x}^{y})}{x} + \frac{10y{{x}^{y}}^{x}ln({x}^{y})}{x^{3}} + \frac{5y^{3}{{x}^{y}}^{x}}{x^{2}} + 5y^{4}{{x}^{y}}^{x}ln({x}^{y}) + \frac{10y^{4}{{x}^{y}}^{x}}{x} - \frac{6y{{x}^{y}}^{x}}{x^{4}} + y^{5}{{x}^{y}}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !