There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{3} - 2x)}^{ln(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{3} - 2x)^{ln(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{3} - 2x)^{ln(x)}\right)}{dx}\\=&((x^{3} - 2x)^{ln(x)}((\frac{1}{(x)})ln(x^{3} - 2x) + \frac{(ln(x))(3x^{2} - 2)}{(x^{3} - 2x)}))\\=&\frac{(x^{3} - 2x)^{ln(x)}ln(x^{3} - 2x)}{x} + \frac{3x^{2}(x^{3} - 2x)^{ln(x)}ln(x)}{(x^{3} - 2x)} - \frac{2(x^{3} - 2x)^{ln(x)}ln(x)}{(x^{3} - 2x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !