There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(1 + {x}^{2})}^{10}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{2} + 1)^{10}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{2} + 1)^{10}\right)}{dx}\\=&(10(x^{2} + 1)^{9}(2x + 0))\\=&20(x^{2} + 1)^{9}x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 20(x^{2} + 1)^{9}x\right)}{dx}\\=&20(9(x^{2} + 1)^{8}(2x + 0))x + 20(x^{2} + 1)^{9}\\=&360(x^{2} + 1)^{8}x^{2} + 20(x^{2} + 1)^{9}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !