There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (sqrt(5)d{\frac{1}{10}}^{x}) + (\frac{5{d}^{2}{10}^{(2x)}}{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = d{\frac{1}{10}}^{x}sqrt(5) + \frac{5}{3}d^{2}{10}^{(2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( d{\frac{1}{10}}^{x}sqrt(5) + \frac{5}{3}d^{2}{10}^{(2x)}\right)}{dx}\\=&d({\frac{1}{10}}^{x}((1)ln(\frac{1}{10}) + \frac{(x)(0)}{(\frac{1}{10})}))sqrt(5) + d{\frac{1}{10}}^{x}*0*\frac{1}{2}*5^{\frac{1}{2}} + \frac{5}{3}d^{2}({10}^{(2x)}((2)ln(10) + \frac{(2x)(0)}{(10)}))\\=&d{\frac{1}{10}}^{x}ln(\frac{1}{10})sqrt(5) + \frac{10d^{2}{10}^{(2x)}ln(10)}{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !