Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sqrt(5)dx}{10} + \frac{5{d}^{2}{10}^{(2x)}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{10}dxsqrt(5) + \frac{5}{3}d^{2}{10}^{(2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{10}dxsqrt(5) + \frac{5}{3}d^{2}{10}^{(2x)}\right)}{dx}\\=&\frac{1}{10}dsqrt(5) + \frac{1}{10}dx*0*\frac{1}{2}*5^{\frac{1}{2}} + \frac{5}{3}d^{2}({10}^{(2x)}((2)ln(10) + \frac{(2x)(0)}{(10)}))\\=&\frac{dsqrt(5)}{10} + \frac{10d^{2}{10}^{(2x)}ln(10)}{3}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return