Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(sqrt(5)d{\frac{1}{10}}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(d{\frac{1}{10}}^{x}sqrt(5))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(d{\frac{1}{10}}^{x}sqrt(5))}\right)}{dx}\\=&({e}^{(d{\frac{1}{10}}^{x}sqrt(5))}((d({\frac{1}{10}}^{x}((1)ln(\frac{1}{10}) + \frac{(x)(0)}{(\frac{1}{10})}))sqrt(5) + d{\frac{1}{10}}^{x}*0*\frac{1}{2}*5^{\frac{1}{2}})ln(e) + \frac{(d{\frac{1}{10}}^{x}sqrt(5))(0)}{(e)}))\\=&d{\frac{1}{10}}^{x}{e}^{(d{\frac{1}{10}}^{x}sqrt(5))}ln(\frac{1}{10})sqrt(5)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return