Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 + sqrt(5)m{\frac{1}{10}}^{x}) + \frac{5{m}^{2}}{(3 * {10}^{(2x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = m{\frac{1}{10}}^{x}sqrt(5) + \frac{5}{3}m^{2}{10}^{(-2x)} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( m{\frac{1}{10}}^{x}sqrt(5) + \frac{5}{3}m^{2}{10}^{(-2x)} + 1\right)}{dx}\\=&m({\frac{1}{10}}^{x}((1)ln(\frac{1}{10}) + \frac{(x)(0)}{(\frac{1}{10})}))sqrt(5) + m{\frac{1}{10}}^{x}*0*\frac{1}{2}*5^{\frac{1}{2}} + \frac{5}{3}m^{2}({10}^{(-2x)}((-2)ln(10) + \frac{(-2x)(0)}{(10)})) + 0\\=&m{\frac{1}{10}}^{x}ln(\frac{1}{10})sqrt(5) - \frac{10m^{2}{10}^{(-2x)}ln(10)}{3}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return