There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln((x - 1)(x - 2)(x - 3))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x^{3} - 6x^{2} + 11x - 6)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x^{3} - 6x^{2} + 11x - 6)\right)}{dx}\\=&\frac{(3x^{2} - 6*2x + 11 + 0)}{(x^{3} - 6x^{2} + 11x - 6)}\\=&\frac{3x^{2}}{(x^{3} - 6x^{2} + 11x - 6)} - \frac{12x}{(x^{3} - 6x^{2} + 11x - 6)} + \frac{11}{(x^{3} - 6x^{2} + 11x - 6)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !