There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{x}{p})(\frac{(p + h)}{b}) + \frac{(k - 1)(p + h)}{b}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{b} + \frac{hx}{pb} + \frac{pk}{b} + \frac{hk}{b} - \frac{p}{b} - \frac{h}{b}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{b} + \frac{hx}{pb} + \frac{pk}{b} + \frac{hk}{b} - \frac{p}{b} - \frac{h}{b}\right)}{dx}\\=&\frac{1}{b} + \frac{h}{pb} + 0 + 0 + 0 + 0\\=&\frac{1}{b} + \frac{h}{pb}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !