There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - x)sin(\frac{πx}{2})}{cos(\frac{πx}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sin(\frac{1}{2}πx)}{cos(\frac{1}{2}πx)} - \frac{xsin(\frac{1}{2}πx)}{cos(\frac{1}{2}πx)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sin(\frac{1}{2}πx)}{cos(\frac{1}{2}πx)} - \frac{xsin(\frac{1}{2}πx)}{cos(\frac{1}{2}πx)}\right)}{dx}\\=&\frac{cos(\frac{1}{2}πx)*\frac{1}{2}π}{cos(\frac{1}{2}πx)} + \frac{sin(\frac{1}{2}πx)sin(\frac{1}{2}πx)*\frac{1}{2}π}{cos^{2}(\frac{1}{2}πx)} - \frac{sin(\frac{1}{2}πx)}{cos(\frac{1}{2}πx)} - \frac{xcos(\frac{1}{2}πx)*\frac{1}{2}π}{cos(\frac{1}{2}πx)} - \frac{xsin(\frac{1}{2}πx)sin(\frac{1}{2}πx)*\frac{1}{2}π}{cos^{2}(\frac{1}{2}πx)}\\=&\frac{πsin^{2}(\frac{1}{2}πx)}{2cos^{2}(\frac{1}{2}πx)} - \frac{πxsin^{2}(\frac{1}{2}πx)}{2cos^{2}(\frac{1}{2}πx)} - \frac{sin(\frac{1}{2}πx)}{cos(\frac{1}{2}πx)} - \frac{πx}{2} + \frac{π}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !