There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 - x)tan(\frac{πx}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = tan(\frac{1}{2}πx) - xtan(\frac{1}{2}πx)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan(\frac{1}{2}πx) - xtan(\frac{1}{2}πx)\right)}{dx}\\=&sec^{2}(\frac{1}{2}πx)(\frac{1}{2}π) - tan(\frac{1}{2}πx) - xsec^{2}(\frac{1}{2}πx)(\frac{1}{2}π)\\=&\frac{πsec^{2}(\frac{1}{2}πx)}{2} - tan(\frac{1}{2}πx) - \frac{πxsec^{2}(\frac{1}{2}πx)}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !