There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{x}{16}){(\frac{15}{16})}^{(x - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{16}x{\frac{15}{16}}^{(x - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{16}x{\frac{15}{16}}^{(x - 1)}\right)}{dx}\\=&\frac{1}{16} * {\frac{15}{16}}^{(x - 1)} + \frac{1}{16}x({\frac{15}{16}}^{(x - 1)}((1 + 0)ln(\frac{15}{16}) + \frac{(x - 1)(0)}{(\frac{15}{16})}))\\=&\frac{{\frac{15}{16}}^{(x - 1)}}{16} + \frac{x{\frac{15}{16}}^{(x - 1)}ln(\frac{15}{16})}{16}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !