There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({a}^{2} + 2)}{a} + \frac{{(2 - a)}^{2}}{(3 - a)}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a + \frac{2}{a} + \frac{a^{2}}{(-a + 3)} - \frac{4a}{(-a + 3)} + \frac{4}{(-a + 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a + \frac{2}{a} + \frac{a^{2}}{(-a + 3)} - \frac{4a}{(-a + 3)} + \frac{4}{(-a + 3)}\right)}{da}\\=&1 + \frac{2*-1}{a^{2}} + (\frac{-(-1 + 0)}{(-a + 3)^{2}})a^{2} + \frac{2a}{(-a + 3)} - 4(\frac{-(-1 + 0)}{(-a + 3)^{2}})a - \frac{4}{(-a + 3)} + 4(\frac{-(-1 + 0)}{(-a + 3)^{2}})\\=& - \frac{2}{a^{2}} + \frac{a^{2}}{(-a + 3)^{2}} + \frac{2a}{(-a + 3)} - \frac{4a}{(-a + 3)^{2}} + \frac{4}{(-a + 3)^{2}} - \frac{4}{(-a + 3)} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !