There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(x - 3)}^{(\frac{(1)}{(x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x - 3)^{\frac{1}{x}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x - 3)^{\frac{1}{x}}\right)}{dx}\\=&((x - 3)^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(x - 3) + \frac{(\frac{1}{x})(1 + 0)}{(x - 3)}))\\=&\frac{-(x - 3)^{\frac{1}{x}}ln(x - 3)}{x^{2}} + \frac{(x - 3)^{\frac{1}{x}}}{(x - 3)x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-(x - 3)^{\frac{1}{x}}ln(x - 3)}{x^{2}} + \frac{(x - 3)^{\frac{1}{x}}}{(x - 3)x}\right)}{dx}\\=&\frac{--2(x - 3)^{\frac{1}{x}}ln(x - 3)}{x^{3}} - \frac{((x - 3)^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(x - 3) + \frac{(\frac{1}{x})(1 + 0)}{(x - 3)}))ln(x - 3)}{x^{2}} - \frac{(x - 3)^{\frac{1}{x}}(1 + 0)}{x^{2}(x - 3)} + \frac{(\frac{-(1 + 0)}{(x - 3)^{2}})(x - 3)^{\frac{1}{x}}}{x} + \frac{-(x - 3)^{\frac{1}{x}}}{(x - 3)x^{2}} + \frac{((x - 3)^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(x - 3) + \frac{(\frac{1}{x})(1 + 0)}{(x - 3)}))}{(x - 3)x}\\=&\frac{2(x - 3)^{\frac{1}{x}}ln(x - 3)}{x^{3}} + \frac{(x - 3)^{\frac{1}{x}}ln^{2}(x - 3)}{x^{4}} - \frac{2(x - 3)^{\frac{1}{x}}ln(x - 3)}{(x - 3)x^{3}} - \frac{2(x - 3)^{\frac{1}{x}}}{(x - 3)x^{2}} - \frac{(x - 3)^{\frac{1}{x}}}{(x - 3)^{2}x} + \frac{(x - 3)^{\frac{1}{x}}}{(x - 3)^{2}x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !