There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x - 3)}^{(\frac{(3)}{(x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x - 3)^{(\frac{3}{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x - 3)^{(\frac{3}{x})}\right)}{dx}\\=&((x - 3)^{(\frac{3}{x})}((\frac{3*-1}{x^{2}})ln(x - 3) + \frac{(\frac{3}{x})(1 + 0)}{(x - 3)}))\\=&\frac{-3(x - 3)^{(\frac{3}{x})}ln(x - 3)}{x^{2}} + \frac{3(x - 3)^{(\frac{3}{x})}}{(x - 3)x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !